12th lecture

Alternating electromagnetic fields 
I. Generation of alternating voltage and current
Electricity is an important part of the modern world. In the 19th century it was Thomas Alva Edison and the coworkers of the laboratory founded by him who were the first inventing numerous applications of electricity for the everyday life. One of his well known inventions was the incandescent light bulb. (He used carbon for filament. Nowadays various Tungsten alloys are applied for that purpose following among others the initiative of the Hungarian inventor Imre Bródy of the Tungsram factory in the first part of the 20th century.) 
Edison, however, used direct current in his laboratory and neglected the proposals by his young assistant Nicola Tesla to make experiments with alternating current. Finally Tesla joined to a competitor the Westinghouse Electric Company and soon fierce competition has been started between the two companies and between the direct and the alternating current. Finally Tesla won this battle in 1893 at the World exhibition in Chicago where the current generators and electric motors based on alternating current demonstrated the possibilities of this technique convincingly.

The aim of the following experiment is to show the fundamental principle of generating alternating voltage or current. 

Experiment with a voltmeter and a coil rotating in magnetic field

Let us regard a flat coil with n turns and with a cross-section A. Let us place this coil into a homogeneous magnetic field of magnitude B. Be ( the angle between the normal vector n of the cross-section A and the vector magnetic induction B. In this case the flux of the magnetic induction (B on the surface A is 
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Now, if we rotate the flat coil around an axis which is perpendicular to both n and B with an angular velocity (, then ( can be given as a function of time by the following formula 
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where (0 is the initial angle at t=0. The induced voltage according to Faraday’s law:
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thus the induced voltage is changing sinusoidally:
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where U0 is the maximum voltage that is the amplitude of the harmonic voltage vibration. If we introduce a new phase ( with the following relationship:
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then the induced voltage can be written in the following form:
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In the following we will use the above form because it is more convenient when we introduce the complex representation of voltage and current. 
II. Describing alternating voltage and current with complex numbers

To characterize completely a given state of a harmonic mechanical or electrical vibrator with an angular frequency ( we need two data. These can be for example the actual position (or voltage) and the actual velocity (or the rate of the voltage change dU/dt). More convenient, however, to give the amplitude A and the phase angle ( of the harmonic motion. Then the position and the velocity of the motion can be calculated from A and ( with trigonometric functions: x = A(cos (, and v = -((A(sin ( if the position x of the oscillator is given as x = A(cos(((t + (0).

Description of harmonic oscillators with rotating vectors 


When we describe the state of our harmonic oscillator with the variables A and ( this pair of data can be represented by a single point in a two-dimensional polar coordinate system where the radius is A and the polar angle is (. Thus in a polar coordinate system the harmonic oscillator can be represented by a radius vector v rotating with the angular velocity (. It can be proved that the sum of two harmonic oscillations is the sum of the two rotating vectors v1 and v2. If the two rotating vectors have different angular velocities then the vectorial description is not so helpful. However, when the two oscillators have the same frequency then their sum will also rotate with the same angular velocity. Thus in a coordinate system rotating with their common angular velocity all these vectors are motionless. See the  Figure below
[image: image8.png]



Description of harmonic oscillators with rotating complex numbers 


As we pointed out the state of an oscillator can be represented by the point (A, () in a polar coordinate system. Such a point can be also represented by a complex number Z, where Z is

Z = A(cos (  + i(A(sin ( = A(exp(i(( ).
This complex number will also rotate with the same angular velocity ( as

Z = Z(t) = A(cos(((t + (0) + i(A(sin(((t + (0) =  A(exp[i((((t + (0 )].
The rotating complex number Z(t)  can be regarded as a product of two complex numbers Z(0) and r(t). Z(0) is the so called complex amplitude

Z(0)  = A(exp(i((0 ),

which is a constant (time independent) complex number. The other factor r(t) is a rotating unit vector (a complex number whose absolute value is 1) 
r(t) = exp(i(((t).

Now we can write that 

Z(t) = Z(0)(r(t) = [A(exp(i((0 )]([exp(i(((t)] =  A(exp[i((((t + (0 )]
where the first factor is the time independent complex amplitude while the second one is responsible for the rotation. Thus a rotating complex number can be used in the following form:

Z(t) = Z(0)(exp(i(((t).

As we will see the applications writing quantities (like position, or voltage or current) which are oscillating sinusoidally in the above complex form has many advantages when we perform various calculations with these quantities.
Addition of two harmonic oscillations 
Let us regard now the sum of two harmonic oscillations 

x(t) = x1(t) + x2(t)

where
x1(t) = A1cos((t + (10)

and

x2(t) = A2cos((t + (20)

When (10 = (20 = (0 then the result is 

x(t) = (A1 + A2)(cos((t + (0).

In this case it is clear that the result is also a harmonic oscillation whose amplitude A is the sum of the individual amplitudes A = A1 + A2. We cannot see so clearly the result if (1 ( (2 , however.  Application of the complex formalism can be helpful now. Let us introduce the rotating complex numbers X1(t) and X2(t) in the following way
X1(t) =  X1(0)(exp(i(((t)
where 
x1(t) = Re{ X1(t)}.
Here Re{ X1(t)} denotes the real part of the complex number X1(t) and X1(0) is its complex amplitude

X1(0) = A1(exp(i((10).
In a similar way

X2(t) =  X2(0)(exp(i(((t)
where 
x2(t) = Re{ X2(t)}

X2(0) = A2(exp(i((20).

Now we can see, that the sum of two rotating complex numbers is also a rotating a complex number which rotates with the same angular velocity:
X(t) =  [X1(0) + X2(0)](exp(i(((t)

and its complex amplitude is the sum of the two complex amplitudes:

X(0) =  X1(0) + X2(0).

Finally, if we want to calculate x(t) it can be obtained as the real part of the rotating complex number 

x(t) = Re{X(t)}.
In most cases, however, we want to know only the amplitude of the resulting oscillations which is the absolute value of the complex amplitude:
A = (X1(0) + X2(0) (= sqrt[(A1)2 + (A2)2 + A1(A2(cos((20 - (10)].

This is because

(X1(0) + X2(0) (= (A1(exp(i((10) + A2(exp(i((20)(= (A1 + A2(exp(i((20 - i((10)(( (exp(i((10)(  = (A1 + A2(exp[i(((20 - (10)]( = sqrt[(A1)2 + (A2)2 + A1(A2(cos((20 - (10)].
According to the above formula in the special cases when  (20 - (10 = 0  then A = A1 + A2 and when (20 - (10 = ( then A = (A1 - A2(.

Alternating voltage and current written as rotating complex numbers


Until this point we avoided to mention complex electric quantities like complex voltage or current because the complex formalism can be applied for any quantities with sinusoidal oscillations. Naturally one of the most important applications of the complex formalism is the field of the electric circuits driven by sinusoidal voltage generators 

ε(t) =  ε (0)(exp(i(((t)
where ε is the electromotive force of the voltage generator. It can be proven that after a short transient regime in a linear circuit containing only resistors, inductors, and capacitors all voltages and currents in the circuit will oscillate with the same frequency but in different phases mostly. Thus the complex currents and voltages can be written as:

Ii(t) =  Ii0)(exp(i(((t)
and
Ui(t) =  Ui(0)(exp(i(((t)
where the index “i” refers to the i-th element of the circuit. 
III. LRC circuits, complex impedance 
Calculation the current in an LR circuit driven by an alternating voltage source

Now let us see how the complex formalism can be applied for the calculation of alternating current and voltage in linear RLC circuits. As an illustration let us regard the Figure below: 
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The above circuit is nearly identical with the one we applied to study transients after closing switch K. The only difference that now we apply an alternating voltage source:   
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We can apply Kirchhoff’s voltage law if we go around the circuit outside the solenoid (avoiding this way the high magnetic field. As the circulation of the electric field is zero along such a path Kirchhoff’s voltage law holds.):   
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The solution of the above differential equation, satisfying also the given initial condition  
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  is the following function:
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As time goes on the exponential expression becomes smaller and smaller thus we can neglect it. The remaining member is a sinusoidal oscillation which can be described as a rotating complex number 

I(t) = I(0)(exp(i(((t)

If we substitute this to the differential equation  
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The above equation can be written in the following form:
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The real part of the above rotating part can be zero for every moment if the complex amplitude itself is zero:
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We can see that the above complex formalism transformed the differential equation into a time independent algebraic equation for the complex amplitude. 

The complex amplitude contains both the amplitude and the phase of the alternating current.

The amplitude of the alternating current - that is the absolute value of its complex amplitude   is  
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The phase angle between I(0) and ε(0) is due to the division by the complex number R+iSYMBOL 119 \f "Symbol"L . Thus the phase shift theta can be calculated as: 
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Thus we obtained the current as a function of time 
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which is the solution of the differential equation without the transient term. As we can see in the above time dependent solution the important parameters is the maximal current and the phase angle. The complex amplitude contains both information.
Introducing the concept of complex impedance 

In the previous paragraph we have calculated the complex amplitude I(0) of the current in an RL circuit driven by a voltage generator of an angular frequency ( and complex amplitude ε(0). Now we will try to generalize that result by introducing the concept of complex impedance: 
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The complex number 
[image: image22.wmf]Z
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  will be called as the complex impedance of the above RL circuit. Analogous equations can be written for a separate resistor or inductor if we introduce the concept of complex impedance for a separate resistor or inductor
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Until now we have not discussed the alternating current flowing through a capacitor. As we remember no steady state direct current can flow through a capacitor. Only transient current can be measured when we charge a capacitor with a battery. In the case of alternating voltage, however, the capacitor is charged and discharged periodically thus an alternating current can flow through it. If we want to determine the complex impedance of a capacitor we can start with the well known relationship between the voltage and the charge on a capacitor: 
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Next we use the complex formalism again:
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The time integral of the complex current flowing through the capacitor can be calculated as:
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(The integration constant is zero here. This is because the integration constant would be proportional with average voltage, which is zero, however, in the absence of direct voltage sources.) This way we are able to define a complex impedance for a capacitor as well:  
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Now we are able to calculate a complex impedance for separate resistors, inductors, and capacitors. The next question is how can we use these result in the case of a circuit containing all the three types of these circuit elements ? To answer this question we have to generalize Kirchhoff’s laws for complex voltages, currents and impedance. 
Kirchhoff’s laws for the complex amplitudes   


As we know Kirchhoff’s voltage law is valid for a loop in a circuit provided that the closed path goes outside of the inductors (that is not inside of the solenoids). In that case we can write that  
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from which follows the voltage laws for the complex voltage amplitudes: 
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In a similar manner we can derive the current law for the complex amplitudes: 
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that is for a certain node the sum of the complex current amplitudes is zero. 
Parallel and serial connection of complex impedances 

When complex impedances are connected in series the complex amplitude of the resulting voltage is the sum of the complex amplitudes measured on the individual elements (voltage law). Moreover to calculate the voltage on an individual element we can use its complex impedance and the complex amplitude of the current which is the same for all elements connected in series: 
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Thus for complex impedances connected in series their resultant is equal to the sum of the impedances of the individual elements. 

In a similar manner we can derive for the resultant of complex impedances connected in parallel (the complex voltage is the same for all parallelly connected impedances):
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Thus the formulas are analogous to the ones we learned for serially and parallelly connected resistors in DC circuits, except we have to use complex impedances here.
IV. Power in AC circuits. Effective or root mean square (rms) value of current and voltage 
Instantaneous power
The instantaneous power P(t) of an alternating current on a complex impedance at a given moment t is the product of the instantaneous voltage U(t) and the instantaneous current I(t):  
P(t) = U(t) I(t).

Let us assume a sinusoidal voltage and current in the following form:

U(t) = U0 cos((t),

I(t) = I0 cos((t + ().

( is the phase angle between the voltage and current. It can be positive in the case of an impedance where capacitors dominate, or negative for impedances where inductors dominate. Thus the instantaneous power is: 

P(t) = U0 I0 cos((t) cos(( t + ().

Regarding the following trigonometric identity

cos(( t + () = cos(( t) cos(() -sin(( t) sin(()

we can write that

P(t) = U0 I0 [cos2(( t) cos(() - sin(( t) cos(( t) sin(()].

The above expression for P(t) can be further simplified by using the following two trigonometric identities: 
cos2(() = [1 + cos(2()]/2,   and    cos(()(sin(() = [sin(2()]/2,

P(t) = [(U0 I0)/2] [cos(() + cos(2(t) cos(() – sin(2(t) sin(()],

which can be written in the following final form: 

P(t) = [(U0 I0)/2] [cos(() + cos(2( t + ()].

Thus the instantaneous power is the sum of two terms. The first is constant in time 
P(constant) = [(U0 I0)/2] cos(() 

and another term which varies sinusoidally in time with the angular frequency of 2(:
P(oscillatory) = [(U0 I0)/2] cos(2(t + ()

Thus we can write
P(t) = P(constant) + P(oscillatory).

Average power 

The average power can be calculated by dividing the work done in a time interval (t1, t2) with the length of the time interval: 
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The work done in this time interval W(t1,t2) can be calculated as a time integral of the instantaneous power in that interval:
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As we know the instantaneous power of the alternating current is the sum of a constant and an oscillatory term. While the average of the constant term will be the same constant all the time, the average of the variable term will approach to zero. (If the time interval is a multiple of the time period T/2=(/( then the average of the variable term is exactly zero.) Thus 
W(t1,t2) ( P(constant) (t2 – t1) = [(U0 I0)/2] cos(() (t2 – t1)    and
P(average) ( P(constant) = [(U0( I0)/2](cos(()

Effective or rms voltage and current 
We can introduce the concept of the effective or root mean square voltage and current with the following definitions 
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then the average power can be written as: 
P(average) = (Ueff Ieff) cos(().

If we compare AC to DC then the effective voltage (or current) is a DC voltage (or  current) which has the same power on an ohmic resistor like its AC counterpart. On an ohmic resistor there is no phase shift between the voltage and the current, that is  (=0 and  cos(() =1. In this case
P(average) = Ueff Ieff,
which analogous to the well known DC formula: 

P = U I
In the case of an ohmic impedance the other alternative formulas of the power are also valid:

P(average) = Ueff( Ieff = R (Ieff)2 = (Ueff)2/R.

As P(average) of an alternating current on a resistor can be written with the help of the instantaneous current as well

P(average) = (P(t)dt /(t2-t1) = (R(I2(t)dt /(t2-t1)

(R(I2(t)dt /(t2-t1) = R (Ieff)2
Ieff = sqrt {(I2(t)dt /(t2-t1)}
or
Irms= ((I2(.

This is the origin of the name rms current: it is the squareRoot of the Mean Square (the average of the square) of the instantaneous current. In a similar way we can derive the root mean square of the voltage

Ueff = sqrt {(U2(t)dt /(t2-t1)}
or
Urms= ((U2(.

Understanding zero and negative power in AC circuits 
In the case of an impedance with no real part (consisting of capacitors or inductors or both but containing no resistors) cos(() = 0 (because  (=(/2 or  (=-(/2). In other words the average power on such impedances is zero but the instantaneous power in most of the time is not zero. How can we understand that? The first –constant - part of the instantaneous power is zero now because cos(() =0.  The remaining second part  
P(oscillatory) = [(U0 I0)/2] cos(2( t + (),

regarding that (=((/2

P(oscillatory) = ([-U0 I0)/2] sin(2(t).

Thus the oscillatory part is a periodic function which is positive in the half of the time and in the other half it is negative. How can we understand that in the case of a capacitor for example? As long as the condensator is charging (the charge on the plates and the electric field of the capacitor is increasing) the power of the generator is positive. The capacitor obtains energy from the generator and that energy is stored in its electric field. When the charge and the electric field strength of the capacitor are decreasing then the energy of the electric field goes back to the generator whose power is negative now. 

In the case of an inductor the energy given to the solenoid by the generator is stored in the magnetic field of the inductor. The power of the generator is positive when the energy stored in the magnetic field is increasing and the power is negative in the opposite case.  
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