4th lecture
The electric potential. 
The electric field strength as a negative gradient of the electric potential
The force as a negative gradient of the potential energy in Mechanics
We know from Mechanics that if a force field is free of vortices, that is when 

rotF =0,

in that case the vector field F(r) can be derived from a scalar field EPOT(r) in the following way:

F = - grad[EPOT(r)],

where  EPOT(r) is the scalar field of the so called potential energy and grad[EPOT(r)] is the gradient of that scalar field. 

The concept of the gradient vector
To understand the gradient of a scalar field the best example is the temperature field 
T = T(r). In that field at a given point the temperature gradient is a vector, which points to the direction where the spatial derivative of the temperature is the largest and its magnitude is that maximal spatial derivative. The spatial derivative 
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in the direction of eS can be calculated as a scalar product of the unit vector eS and the gradient

[image: image2.wmf]S

e

grad

×

=

T

ds

dT

.

The displacement vector dr  in the above formula is dr = ds eS. The gradient field is perpendicular everywhere to the isotherm surfaces (surfaces, where the temperature is  constant ). Thus the total differential of the temperature can be written as
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The electric potential as the potential energy of the unit charge

As the electrostatic field is free of vortices the test charge  QT has a potential energy ET, and the force FT acting on that charge can be expressed (as we did in the Mechanics):

FT= - gradET.

We know that the electric field strength is the force acting on the unit charge:

E = 
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thus

E = - grad
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or

E = - grad(,

where ( is the so called electric potential:

( = 
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The potential energy in an electrostatic field

It is also known from Mechanics that the work WAB done by a conservative field between the point A and B can be expressed as the potential energy EPOT(A) in the initial point A minus the potential energy EPOT(B) in the end point B :

WAB = EPOT(A) - EPOT(B),

that is 

WAB = - (EPOT.

Why do we have that minus sign? This is because the potential energy is not work but it is the ability of the field to make work. (This can be illustrated with the following example. Let us assume that we have 110 € in our purse. We buy a pair of shoes for 40 €. After spending this sum our ability to spend money will be smaller by that 40 €. Thus our money spending ability has decreased. If W is the spending and E is the ability to spend  then the negative sign indicates in the formula W= - (E that spending decreases the amount of our money to spend.)

In electrodynamics if the work WAB is made on the test charge QT by the electric field then we have to divide the above formula by the test charge QT  to obtain the electric voltage on left hand side, and the negative change of the electric potential on the right hand side of the equation: 
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ie. with our former concepts of the electric voltage UAB and electric potential (
UAB = ((A) - ((B) = - ((
As we can see from the above formula, only the potential difference ((A) - ((B), which is determined by the above formula as UAB. The electric potential itself depends on our choice of the reference point, where the potential is zero (that is ((ref)=0). If we assume that B is that  point, that is if 
((B) = 0,
then
 UAB= ((A) – 0 = 
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In electrostatics the usual choice is B = ( (the reference point is in the infinity), thus

((A) = UA( = 
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Potential field of the point charge. 

Potential field of discrete charge distributions 

As it was shown previously the voltage UAB in the field of a point charge Q between the points A and B can be given by the following formula:

UAB =
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Assuming now that B the reference point is in the infinity, then
((A) = UA( =
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and
((A) =
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If we regard an electric field created by several point charges their electric field can be written as:

E = ( Ei,
where Ei is the electric field due to the i-th point charge. Now the electric potential in such a field can be expressed as 

((A) = 
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(i(A) =
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and RiA is the distance of the point A from the point charge Qi.
Equipotential surfaces and the potential gradient.

An equivalent form of the second law of electrostatics


As it was already pointed out at the beginning of this lecture the electric field strength is the negative gradient of the electric potential:
E = - grad(.

Now we are going to prove this important relation between the electric field and the electric potential independent of the analogous mechanical expression based only on the definition of the electric potential difference 

((A) - ((B) = - (( = UAB =
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The change of the potential when moving from A to B: 
(( =
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( is a scalar field, which means that ( = ((r), or in a coordinate system of the Descartes type ( is a three variable function ( = ((x, y, z). The total differential of ( (its change d( due to the changes in the coordinates dx, dy, and dz):
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Which can be written as 
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in a similar way like the temperature change in a temperature field due to the displacement dr. Thus d( is a scalar product of two vectors: the gradient vector
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and the displacement vector
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Now the potential change can be expressed as

(( =
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The voltage UAB is the negative of this change of potential:
UAB =-(( 
consequently
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As the above relationship should be valid for any A-B path, we can conclude that
E = - grad(,

which is the formula we wanted to prove.


It is known from vector analysis that the rotation of any vector field v(r), which can be derived as the gradient of a scalar field S(r), is zero
rot v = rot (grad S) = 0,

we can write that

rot E = rot (grad () = 0.
In other words the local form of the second law of electrostatics
rot E = 0
can be derived from the relationship of E = - grad(. Consequently the latter formula can be regarded as an alternative or equivalent form of the second law of electrostatics.
Charge distributions in conductors. 

Surface or quasi two-dimensional charge distributions 

Charge distribution on the surface of a conductor
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Figure 4.1 A charged spherical metal (conductor) shell (experiment at the lecture)
The experiment demonstrates that while charge can be removed from the outer surface of the shell if we touch it with a small solid sphere (equipped with an insulating handle, see Figure 4.1 ), no charge can be removed with the same device if the small sphere touches the inner surface of the shell. An electrometer (not shown on the Figure) is also a part of the experiment. It is applied to indicate whether the small sphere is charged or not.
[image: image26.wmf]
Another experiment applies small qualitative electrometers outside and inside of a charged cylindrical shell. 

Figure 4.2 The “antenna” experiment

As we can see the small “antennas” indicate charge only outside of the shell. 
Conclusion: there is no electric charge inside of a conductor. Why? This is because 
1) no electrostatic field can exists in a conductor because an electric field would generate an electric current in a conductor. This might happen but not in electrostatics.
2) If a charge would exists inside of a conductor then the E lines starting from that charge (in the case of a positive charge) or ending in that charge (when the charge 
inside the conductor is negative) would mean an E field inside the conductor. 

Nevertheless no electrostatic field can appear in a conductor, see  1) . Consequently, 
in Electrostatics no electric charge can exists inside of a conductor . (Naturally, this 

does not mean that e.g. there are no conductive electrons in a metal. It means that the

negative charge of these electrons is completely compensated by the positive charge of 

the atomic nuclei inside the conductor.)
As the electric field strength in a conductor is 0
E = 0,

the gradient of electric potential should be zero
E = - grad( = 0,

which means that the electric potential ( is a space independent constant

((r) = const.

(Let us think of a homogeneous temperature field where T(r) = const. In that field the temperature gradient is zero. Or vice versa: when the temperature gradient in a temperature field is zero then that field should be homogeneous. Homogeneous means: the variable is space independent, it has everywhere the same value.)

The two laws of electrostatics in the case of surface charge distributions 

As it was shown in the previous paragraph charges can be found only at the surface of a conductor. (Naturally this simplified picture of the two dimensional charge distribution is not valid on an atomic scale: for example the excess electrons can be found in a very thin but finite layer at the metal-air interface. This layer, however, is so thin from the point of a macroscopic electrodynamics, that the assumption of the two-dimensional charge distribution can be a very good approximation in most cases.)

In the case of a two-dimensional charge distribution we can introduce the concept of the surface charge density ( which can be defined analogously to the usual (or volume) charge density. Thus ( is the charge of the unit surface:
[image: image27.wmf]
The next table presents the two laws of electrostatics both for volume for a surface charge distribution to see the analogy
	The laws of  electrostatics
	 In the case of volume charge distribution
	In the case of surface charge distribution

	1st  law
	divD = (
	Dn(2) –Dn(1) = (

	2nd  law
	rotE = 0
	Et(2) – Et(1) = 0


In the table Dn(1) and  Dn(2) is the normal component of the electric induction vector D(1) at the 1st  and D(2) at the 2nd space (at one side and at the other side of the surface see Figure 4.3 below) respectively. The difference Dn(2) –Dn(1) is often called as “surface divergence of D”.

In the table above Et(1) and  Et(2) is the tangential component of the electric field strength E(1) at the 1st  and E(2) at the 2nd space (at one side and at the other side of the 
surface see Figure 4.4 below) respectively. The difference Et(2) – Et(1) is often called as the tangential component of “surface rotation E”.
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Figure 4.3
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Figure 4.4
The local forms of the first and second law of electrostatics for surface charge distribution can be derived from their global forms.
Derivation of the first law (Fig. 4.3):
We start with the well known global form of the first law: 
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In the case of surface charge distribution the charge within the closed surface A is the charge on the surface B. Thus we can write:
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The closed surface A can be decomposed to two surfaces A(1) and A(2) which shrink to the surface B from two sides. Thus the surface integral of D can be written in the following form: 
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because 
dA(1) = - dAn 
    and
  dA(2) = dAn  

see Fig. 4.1, thus

  D(1)dA(1) = -Dn(1)dA    and    D(2)dA(2) = Dn(2)dA.

As the surfaces shrink to surface B we can write:
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Finally, regarding that the above equation should be valid for all surfaces:

Dn(2)- Dn(1) = (.

Derivation of the second law (Fig. 4.4):

We start with the well known global form of the second law: 
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The closed curve G can be decomposed to two simple curves G(1) and G(2) at the one and the other side of the surface 
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which can be written as
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because 
dr(1) = -dt 
and
  dr(2) = dt   

where t is the tangential unit vector (see Fig. 4.4), thus 

  E(1)dr(1) = - Et(1)dt 
and 
E(2)dr(2) = Et(2)dt.

As the integral is zero for all H curves we can conclude the local form of the second law for surfaces:
Et(2) - Et(1) = 0.

The laws of Electrostatics for conducting surfaces

Here we can apply the first and second law of electrostatics for surface charge distributions applying the special condition that within a conductor there is no electrostatic field: both E and D should be zero. Consequently if the surface in question is the surface of the conducting medium (1), which is in contact with the vacuum (2) then we can write that:
E(1) = 0 and D(1) = 0.
The formulas, which can be derived from the above conditions and valid for the two dimensional (in short: 2D) charge distribution in the special case of conducting surfaces are summarized in the following table:
	Laws of electrostatics
	In the case of a general 2D charge distribution
	In the case of a conductor (1): conductor, (2):vacuum

	1st law
	Dn(2) –Dn(1) = (
	Dn(2) = (

	2nd law
	Et(2) – Et(1) = 0
	Et(2) = 0


Summarizing: E(2) - the electrostatic field in the vacuum - is always perpendicular to the surface of the conductor (as its tangential component is zero) and Dn(2) - the value of the normal component of the D vector in the vacuum – is equal to the absolute value of the vector D  itself as D is perpendicular to the surface (because D = (0E in vacuum). Consequently we can write that 
D(2) = (,

the absolute value of the D vector at the surface of a conductor is equal to the surface charge density ( in that point.
Curved conducting surfaces.  The curvature effect: corona discharge and electric wind
Experiment: Electric wind. Segner wheel, candle light.

The curvature effect is based on the fact that at the sharp edges of the conductors the electric charge density, and consequently also the electric field strength is high due to the relationship derived in the previous paragraph:

D(2) = (, 
(
(0E(2) = (
(
E(2) = (/(0.

The high electric field ionizes the molecules of the air. E.g. a positively charged sharp point removes the electrons from the nitrogen and oxygen molecules generating positive ions. After charged these positive ions are repelled from the sharp point carrying the charge to the ground. This is the so called corona discharge, which is associated with a bluish glow and a movement of the air, which is the so called electric wind.
Application: electrostatic copy machines, Van de Graaf generator

How can we explain that at the sharp edges of a conductor – i.e. at places where the radius of the surface curvature is very small – the surface charge density ( becomes high? To understand this let us regard the following experiment with two spheres of radius R1 and R2. If the spheres a far away from each other then their electric fields outside of the spheres will look like the electric field of separate point charges. Thus the potential on the surface of the first sphere charged with Q1 can be written as :
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In a similar way the potential of the second sphere charged with Q2 :
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If we connect the two spheres with a long conductor then 
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consequently
Regarding that the surface charge density on a sphere can be calculated as 
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we can conclude that
or 

(1(R1 =(2(R2 =const,

which result means: the smaller the radius of a sphere the higher the surface charge density there. This explains the curvature effect: on a surface where the local curvature is high (i.e. the local radius is small) the charge density should be high.
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