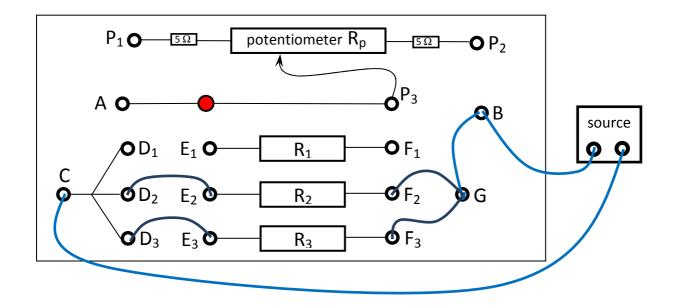

No. of the panel:

No. of the source:

measured emf: $\varepsilon =$

Draw the circuit diagram:


Connect the voltmeter between the points	measured voltage	resistance between the points	calculated current
E_1 and F_1	V _{E1F1} =		
E_1 and E_2	V _{E1E2} =		
E_2 and F_2	V _{E2F2} =		
F_1 and F_2	V _{F1F2} =		
			average:

The sum of the voltages and equals the voltage

Terminal voltage of the source: $V_T =$

Calculate the internal resistance of the source from the formula $V_T = \epsilon - R_i \cdot I$ using the average current:

R_i =

Draw the circuit diagram:

Remove the wire connecting D_2 and E_2

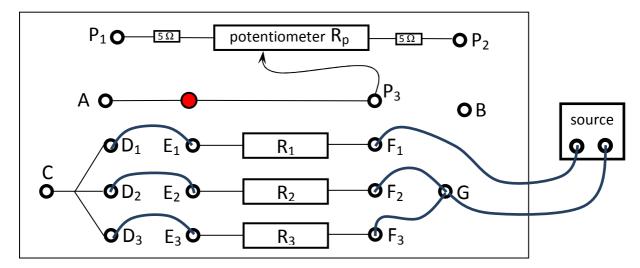
 D_3 and E_3

B and G and connect the ammeter in series between those points.

	measured current	resistance of the branch	calculated voltage
D_2 and E_2	I ₂ =		
D_3 and E_3	I ₃ =		
B and G	I _s =		

The sum of the currents and equals the current

Estimate the resistance of the ammeter:


calculate the resultant resistance of the circuit from $R_2,\,R_3$ and R_i :

 $R_{res, c} =$

calculate the resultant resistance of the circuit from ϵ and I_s :

R_{res, m} =

 $R_{A} = R_{res, \, m} - R_{res, \, c} \approx$

Draw the circuit diagram:

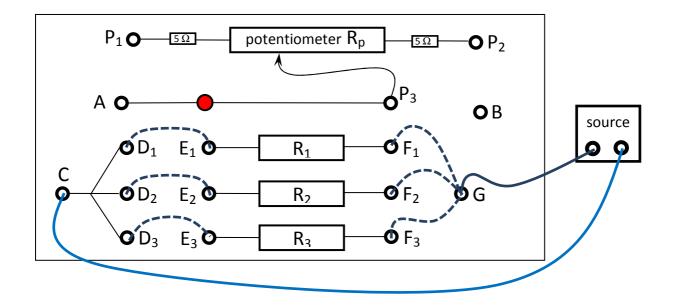
Remove the wire connecting D_1 and E_1

 D_2 and E_2

 D_3 and E_3 and connect the **ammeter** in series between those points.

	measured current	resistance	calculated voltage
D_1 and E_1	I ₁ =		
D_2 and E_2	I ₂ =		
D_3 and E_3	I ₃ =		

The sum of the currents and equals the current

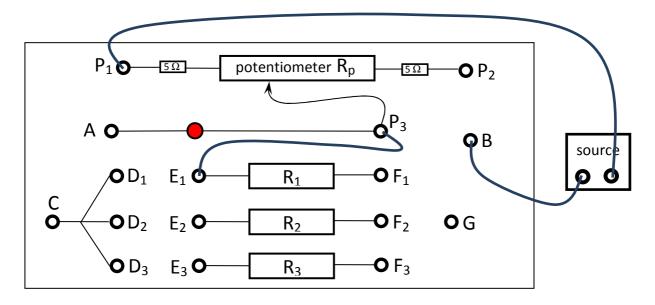

The voltages and are equal.

Connect the	measured voltage	resistance	calculated current
voltmeter between			
E_1 and F_1	V _{E1F1} =		
E_2 and F_2	V _{E2F2} =		
E_3 and F_3	V _{E3F3} =		
F_1 and G	V _{F1G} =		

The voltages and are equal.

The sum of the voltages and equals the voltage

The currents and are equal.


Measure the voltage between the points C and G.

resistances	resistance of the load	measured	$V_T / (\epsilon - V_T)$
connected	RL	voltage	
		V _T	

Plot $~~V_T$ / ($\epsilon-V_T$) ~~ against $~R_L~~$ and calculate R_i from the slope:

$$\begin{split} V_T &= \epsilon - I \cdot R_i \quad \text{and} \quad I = \epsilon / \left(\begin{array}{c} R_L + R_i \end{array} \right) \quad \rightarrow \quad V_T = \epsilon \cdot R_L / \left(R_L + R_i \right) \quad \text{and} \quad \epsilon - V_T = \epsilon \cdot R_i / \left(R_L + R_i \right) \\ &\rightarrow \quad V_T / \left(\begin{array}{c} \epsilon - V_T \end{array} \right) = R_L / R_i = (1/R_i) \cdot R_L \end{split}$$

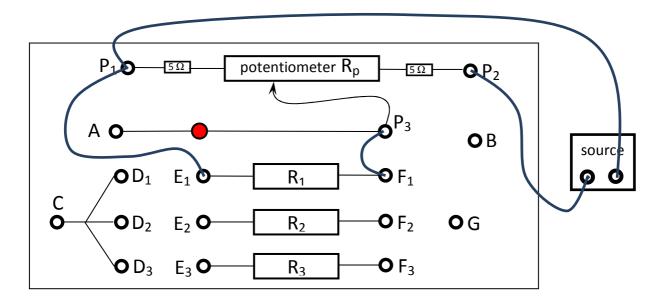
Measure the resistance between P_1 and P_2 : R_{P1P2} = The resistance of the potentiometer: $R_p = R_{P1P2} - 10 =$

Connect the ammeter between the points F_1 and $\mathsf{B}.$

Draw the circuit diagram:

Measure the maximum and the minimum value of the current:

I_{max,m} =


I_{min,m} =

Calculate the maximum and the minimum value of the current:

 $I_{max,c} = \varepsilon / (R_i + R_1 + R_A) =$

 $I_{min,c} = \varepsilon / (R_i + R_1 + R_A + R_p) =$

Deviation of the measured and calculated values:

Connect the voltmeter between the points E_1 and $\mathsf{F}_1.$

Draw the circuit diagram:

Measure the maximum and the minimum value of the voltage:

V_{max} =

V_{min} =