1. Determination of the focal length of a convex lens

Data:
The distance between the object and the screen:
The distance between the object and the lens $d_{obj} =$
The distance between the image and the lens $d_{img} =$
The size of the image $s_{img} =$

Evaluation:
1/1. Formula [F2]: $f =$

1/2. Formula [F3]: $M =$

$\rightarrow s_{obj} =$

1/3. Diagram: on a separate A4 sheet.

1/4. Formula for f: $f =$

\rightarrow formula for $\Delta f =$

calculation: $\Delta f =$

2. A Estimation of the thickness of a hair fiber with a lens

Data: $f = 50$ mm

The distance between the object and the lens $d_{obj} =$

The distance between the image and the lens $d_{img} =$

The size of the image (diameter of the hair fiber) $s_{img} =$

Evaluation:

2/1. $M =$

2/2. The width of the hair fibre: $s_{obj} =$
OPTICS DATA SHEET

2.B Measuring the width of a hair fiber with diffraction

Data: \(\lambda = 650 \text{ nm} \)

The distance between the hair and the screen: \(L = \)

The average distance between two dark spots: \(\Delta x = \)

Evaluation:

The width of the hair: \(D = \)

3. Determination of the refractive index of prism

Data: angle of the prism: \(\Phi = 60^\circ \)

The angle of incidence \(\alpha \) when \(\delta = 90^\circ \): \(\alpha = \)

Evaluation:

Formula: \(n = \)

Calculation: \(n = \)