DATA SHEET / MECHANICS / SPRING CONSTANT

Name:

1. Determining the spring constant k based on elongation

Measured data:

Mass of one nut (read from the box): $m_{nut} = g = kg$ Mass of the PVC rod (measured): $m_{PVC} = g = kg$

Load		Position of the lowest point of the spring	
		z ()	
	n		
no load	-		
the PVC rod	0		
the PVC rod + n nut(s)			
the PVC rod + unknown mass	-		

Calculations

Graphical method:

slope calculated from the graph: $\frac{\Delta z}{\Delta n} =$

spring constant: k =

DATA SHEET / MECHANICS / SPRING CONSTANT

Method of least squares:

Points used for the calculation: from n = to n = . $\bar{n} =$ $\bar{n}^2 =$ $\bar{n}^2 =$ $\bar{n}^2 =$ $\bar{z} =$ $\bar{n} \cdot \bar{z} =$

slope: $\frac{\overline{n \cdot \overline{z}} - \overline{n} \cdot \overline{z}}{\overline{n^2} - \overline{n}^2} =$

spring constant: k =

Unknown mass: m_x =

2. Oscillations of a spring

Measured data:

number	time of	_	Calculations:	spring constant	
of nuts	10 periods (s)		mass ()	Т()	k ()
		-		-	